509. Fibonacci Number
The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), for N > 1.
Given N
, calculate F(N)
.
Example 1:
Input:
2
Output:
1
Explanation:
F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input:
3
Output:
2
Explanation:
F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input:
4
Output:
3
Explanation:
F(4) = F(3) + F(2) = 2 + 1 = 3.
Note:
0 ≤ N
≤ 30.
解题思路:
- 思路1:采用递归的方法
- 思路2:采用数组,将斐波那契数存入到数组中。
解答:
//方法1: //效率较低,运行时间20ms int fibonacci(int n) { if(n == 0) return 0; else if(n == 1) return 1; return fibonacci(n-1) + fibonacci(n-2); } class Solution { public: int fib(int N) { return fibonacci(N); } }; //方法2: //运行时间0ms class Solution { public: int fib(int N) { int *p = new int[N+1];//开辟大小为N+1的数组 p[0] = 0; p[1] = 1; for(int i = 2; i < N+1; ++i) { p[i] = p[i-1] + p[i-2]; } return p[N]; } };